Énoncé
Déterminer les modules des nombres complexes suivants.
-
\(z_1=(1-i)(4-2i)\)
-
\(z_2=\dfrac{4}{-2+3i}\)
-
\(z_3=\dfrac{2+3i}{1-i}\)
-
\(z_4=(\sqrt{2}-2i)^4\)
Solution
-
\(\lvert z_1 \lvert = \lvert (1-i)(4-2i) \lvert= \lvert 1-i \lvert\times \lvert 4-2i \lvert= \sqrt{1^2+(-1)^2} \times \sqrt{4^2+(-2)^2}\)
\(= \sqrt{1+1} \times\sqrt{16+4}= \sqrt{2} \times \sqrt{20}= 2\sqrt{10}\)
-
\(\lvert z_2 \lvert = \lvert \dfrac{4}{-2+3i} \lvert= \dfrac{\lvert 4 \lvert}{\lvert -2+3i \lvert}= \dfrac{\sqrt{4^2+0^2}}{\sqrt{(-2)^2+3^2}}= \dfrac{\sqrt{16}}{\sqrt{4+9}}= \dfrac{4}{\sqrt{13}}\)
-
\(\lvert z_3 \lvert= \lvert \dfrac{2+3i}{1-i} \lvert= \dfrac{\lvert 2+3i \lvert}{\lvert 1-i \lvert}= \dfrac{\sqrt{2^2+3^2}}{\sqrt{1^2+(-1)^2}}= \dfrac{\sqrt{4+9}}{\sqrt{1+1}}= \dfrac{\sqrt{13}}{\sqrt{2}}\)
-
\(\lvert z_4 \lvert = \lvert (\sqrt{2}-2i)^4 \lvert= \lvert \sqrt{2}-2i \lvert^4= \left(\sqrt{ \left(\sqrt{2} \right)^2+(-2)^2} \right)^4= \left(\sqrt{2+4} \right)^4= \left(\sqrt{6} \right)^4= 36\)